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Abstract —Benthic habitat mapping using high spatial resolution image exhibits several issues. One of the issues is the 

occurrence of sunglint on water surface which alter intra habitat spectral variation recorded by the sensor. Prior to further 

image analysis, sunglint should be removed to avoid any spectral and radiometric confusion. This study aimed at removing 

sunglint from Quickbird image and analyzes the effect of sunglint on altering benthic habitat spectral variation. Infrared 

(IR) band was used to normalize the variation of sunglint on visible bands. In order to analyze habitat’s spectral variation 

due to sunglint, coefficient of variation analysis was performed on raw and corrected Quickbird image. The results showed 

that NIR band was very effective to remove sunglint from visible bands. In addition, we found out that an average of 64.3% 

variation within particular habitat class was due to sunglint. Furthermore, we also found that sunglint correction reveals 

inherent information about benthic habitat that has been previously covered by sunglint.  
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I. INTRODUCTION 

Remote sensing technology is highly suitable for replacing 

the extensive field survey of benthic habitat mapping and put 

the information about benthic habitat in spatial and temporal 

context. Remote sensing has the ability to cover large portion 

of earth, identifies object’s spectral information, and 

temporally records data at various spatial resolutions. Remote 

sensing for benthic habitat mapping requires visible bands 

with its water penetration ability. Visible bands have the 

ability to penetrate water up to 25 m when the water is very 

clear [4]. However, the maximum penetration ability varies 

with geographical and water condition [16]. However, visible 

bands have lower penetration ability when interacted with 

more turbid water due to the scattering performed by the 

sediment suspended on water column. Ideally, wavelengths 

longer than NIR should not be used for identifying underwater 

objects because those ranges of energies are effectively 

absorbed by water. Consequently, they cannot penetrate into 

water body, and thus produce very low reflectance and appear 

dark on the image.  

Remote sensing images equipped with the ability to 

perform underwater mapping are Landsat series ([2], [14]), 

SPOT series ([13], [25]), ASTER VNIR [17], ALOS AVNIR-

2 [22], IKONOS ([1], [21]), Quickbird ([10], [23]), Geoeye-1, 

Worldview-2, and Rapideye. Those images are multispectral 

and have the ability to effectively map benthic habitat up to 

the second level of detail at [18] benthic habitat classification 

scheme [16]. Beyond the second level of the scheme or going 

into life-form and species level is quite difficult for those 

images. Currently, the best image for benthic habitat mapping 

is the hyperspectral ([7], [15], [23]). Hyperspectral data such 

as CASI manages to perform well until the third level of 

benthic habitat hierarchical classification scheme. Despite the 

performance for benthic habitat mapping, CASI as well as 

other hyperspectral data are not widely available. Since the 

platform of most hyperspectral sensor is airborne, the 

operational cost is high, the area coverage is small, and the 

processing technique is more complex than multispectral 

image. Therefore, the selection of remote sensing data used to 

perform benthic habitat mapping is highly depends on the 

purpose of the mapping and the required level of detail of the 

output map. 

Remote sensing is very promising on replacing the 

extensive field survey of benthic habitat. However, remote 

sensing of benthic habitat mapping poses sunglint issue due to 

the overlying water surface. Sunglint is a specular reflection 

occurs in water surface caused by wind-driven wave. Sunglint 

occurs on the waves crest and produces a circular bright band 

that obscures the underlying information. Furthermore, the 

occurrence of sunglint may worsen when the sensor viewing 

angle is relatively similar with the angle of sunlight reflected 

off the water surface. Even though sunglint can be useful to 

interpret wind direction, surface water currents, oil slick, and 

water temperature [8], it is quite a problem for underwater 

mapping activities. In short, in spite of its promising capacity, 

remote sensing for underwater mapping is still affected by 

sunglint issue. 
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Sunglint acutely occurs on the condition where remote 

sensing performs optimally for underwater mapping. Sunglint 

appears when the cloud coverage is minimal, the water is 

optically shallow and clear, and the image is recorded at high 

spatial resolution. The existence of sunglint is unfortunate 

because at this optimal condition, remote sensing image is 

expected to deliver optimum information about benthic habitat. 

Consequently, in order to optimally using remote sensing 

images for benthic habitat mapping, sunglint should be 

removed prior to further image analysis. 

This study covers the removal of sunglint on Quickbird 

image as well as the comparison analysis between the original 

image and sunglint-free image. That analysis was intended to 

see how much sunglint alters benthic habitat spectral 

information. High spatial and radiometric resolution data such 

as Quickbird was selected because the appearance of sunglint 

on such kind of data is more prominent than in medium or 

coarse resolution data. At lower resolution, sunglint is partly 

generalized by the large pixel size and low data digitization. 

Therefore, the impact of sunglint removal is also more evident 

at higher resolution data. 

Furthermore, Coefficient of Variation (COV) analysis was 

used to see how the information within particular class habitat 

is altered due to sunglint effect. The method to remove 

sunglint from Quickbird image was developed by [11]. The 

method utilizes IR band for correcting the sunglint in the 

available visible bands. 

II. STUDY AREA AND IMAGE DATA 

The study area was located within the National Park of 

Ujung Kulon. The area is administratively located on 

Kecamatan Sumur and Cimanggu, Pandeglang District, 

Banten Province. The whole National Park is extending from 

102
o 
2’ 32” E to 102

o
 37’ 37” E and 6

o
 30’34” S to 6

o
 52’17” 

S. The National Park has an area of 120,551 ha composed of 

76,214 ha of land and 44,337 ha of the surrounding reefs and 

sea. Most reefs in the area are classified into fringing reef 

associated with seagrass meadows, white sandy beach, and 

mangrove stands along the shoreline. The shoreline of the area 

is shaped by the oceanographic dynamics of the surrounding 

sea, especially by wave energies. Since the area has high wave 

energy, it is a very good place to spot sunglint occurrence. 

Consequently, most benthic habitats information in this area 

are severely affected by sunglint, and thus this location is 

perfect for analysing the effect of sunglint on satellite-based 

benthic habitats identification. The exact location of the study 

area was the south west part of Panaitan Island near Kasuaris 

Bay (Fig. 1). 

Quickbird image used in this study is stored in 16-bit 

package (the original dynamic range is 11-bit). It was 

delivered in 2A level of correction and was acquired on 15
th

 

August 2002. This image is owned by DigitalGlobe and was 

obtained for free from Global Land Cover Facility (GLCF).  

The image has 2.88 m spatial resolution due to 14.7
o
 off-nadir 

recording. According to Quickbird Imagery Product Guide [6], 

the corrections applied on product level 2A are dark pixel 

subtract, non-uniformity correction (detector-to-detector 

relative gain), non-responsive detector fill, and a conversion 

for absolute radiometry. Sensor corrections account for 

internal detector geometry, optical distortion, scan distortion, 

any line-rate variations, and registration of the panchromatic 

and multispectral bands. Geometric corrections remove 

spacecraft orbit position and attitude uncertainty, earth 

rotation and curvature, and panoramic distortion. As we did 

not integrate any field data into the image, geometric 

correction using GCP (Ground Control Point) was not applied.  

 

Fig. 1 The location of study area within Ujung Kulon National Park. The 

exact location is show in red box 

III. METHODS 

Before applying sunglint removal technique, several 

adjustments were made to the image. At first, Quickbird 

image was converted into TOA (Top of Atmosphere) spectral 

radiance. The unit of TOA spectral radiance is W/m
2
 str µm. 

The formula to convert DN to TOA spectral radiance is as 

follow [12]:  

LPixel.Band = absCalFactorBand x qPixel.Band … (1) 

LλPixel.Band = LPixel.Band / ΔλBand … (2) 

Where LPixel,Band is TOA band-integrated radiance image 

pixels (W/m
2
 str), LλPixel,Band is TOA band-averaged spectral 

radiance image pixels (W/m
2
 str μm), ΔλBand is the effective 

bandwidth (μm) for a given band, absCalFactorBand is the 

absolute radiometric calibration factor (W/m
2
 str count) for a 

given band, and qPixel,Band is radiometrically corrected image 

pixels (Quickbird DN values). 
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The value of absCalFactor (K) has been revised based on 

the ground truth measurement and analysis from Joint Agency 

Commercial Imagery Evaluation (JACIE) Team. However, 

the revised value is only available on the .IMD file of the 

image acquired after 6
th

 June 2003 00:00 GMT. The image 

used in this study was recorded on 15
th

 August 2002, and thus 

the K-revised value was not in the .IMD file. Therefore, the 

calibration factor values for TOA spectral radiance calculation 

were taken from the value given in Table 1 [12]. 

TABLE I 

K-REVISED VALUE FOR QUICKBIRD IMAGE RECORDED BEFORE 6TH
 JUNE 2003 

Band K-revised (W/m2 str count) 

Blue 1.60412 x 10-2 

Green 1.43847 x 10-2 

Red 1.26735 x 10-2 

NIR 1.54242 x 10-2 

TOA spectral radiance image was still affected by 

atmospheric disturbance and the objects spectral signature was 

also still altered. As a resolve, FLAASH atmospheric 

correction module was applied. The basic data needed to run 

FLAASH module were the scene center location, sensor type, 

sensor altitude, average ground elevation, spatial resolution, 

the time of image acquisition, atmospheric model, aerosol 

model, and initial visibility. Some parameters were available 

directly on image metadata and others were derived from the 

analysis of geographical condition of the study area. Digital 

Elevation Model (DEM) data from SRTM image was used to 

estimate the average ground elevation of the study area. We 

put maritime aerosol model and tropical atmospheric model as 

other inputs. For the initial visibility, we used 40 km as the 

default for the visibility during clear sunny cloudless day. 

Finally, FLAASH processed those parameters to normalize 

atmospheric disturbances and repair the object’s spectral 

signatures.  

Sunglint removal was performed on atmospherically 

corrected image using the technique developed by [11]. This 

method utilizes IR band, which has similar index of refraction 

with visible bands, to remove the sunglint on visible bands. 

There are two assumptions used in this method, first, IR band 

produces minimum reflectance on the interaction with water 

body, and thus any NIR reflectance above that minimum value 

was considered as the offset caused by sunglint, assuming the 

water is optically deep. Second, the lowest IR value was the 

sunglint-free pixel. Afterward, to remove sunglint from visible 

bands, empirical model between IR band and visible bands 

were created to obtain data on how much sunglint affect the 

reflectance of optically deep water in NIR band. Finally, the 

additive sunglint value in IR band was integrated with the 

gradient of calibration obtained during the empirical model to 

remove sunglint in visible bands.  

Basically, during the empirical model, this method requires 

the best IR band to be paired with the visible bands. The 

selection of the best IR band can be conducted by empirically 

connect each IR band with the visible bands to find the IR 

band that has the best fit with the visible bands. However, 

since Quickbird has only one IR band, the selection of the best 

IR band was not necessary. The empirical model between NIR 

band and visible bands was intended to obtain the gradient of 

calibration or slope (b) of various sunglint intensities occurred 

on both visible and NIR bands. Then, the slope (b) was used 

as the coefficient to perform sunglint correction on visible 

bands using the following equation: 

 

Ri’ = Ri – (bi x (RNIR – MinNIR)) … (3) 

 
Where: 

 Ri’ : Sunglint-free reflectance 

 Ri : Reflectance from visible band i 

 bi : Regression slope (b) 

 RNIR : Reflectance from NIR band 

 MinNIR : Minimum NIR band/sunglint-free 

To understand the effect of sunglint on altering the 

variation of spectra within particular benthic habitat class, 

COV analysis was used. The value of COV is unitless where 

bigger COV means greater variation and vice versa. Therefore, 

COV analysis may show the variation of the reflectance 

within particular habitat. This analysis was very useful 

because it showed the intra habitat spectra variation which 

conceptually should not be too high within a class. 

Theoretically, for any particular habitat class, COV value 

should stay low in order to avoid any confusion and 

misclassification during visual interpretation or digital 

classification.  

COV value was calculated by rationing the standard 

deviation (Ϭ) to its mean (µ). The calculation of COV was 

conducted on each available habitat class. In general, benthic 

habitats in the study area consist of coral reefs, sparse and 

dense seagrass beds, and sand distributed at various depths. 

Last, in order to see how much sunglint alter the spectral 

variation of particular habitat class, the ratio of COV of each 

habitat class from uncorrected and sunglint-free image were 

calculated. 

IV. RESULTS AND DISCUSSION 

The conversion to TOA spectral radiance converted the 

unitless DN into energy unit of W/m
2
 str µm. This unit was 

converted into µW/cm
2
 str nm before performing atmospheric 

correction. Next, by using several FLAASH input parameters 

described previously, atmospherically corrected Quickbird 

image was obtained. Additionally, to check whether the 

correction was successful or not, spectral signatures of some 
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major objects were analysed and plotted. If the image has 

been successfully corrected, all objects should have proper 

spectral signature. For example, when green vegetation 

spectra are analysed, it will show a low reflectance in blue and 

red band but produce a high reflectance in green and NIR 

band. From the analysis, the spectral signatures for most 

known objects such as dry sand, green vegetation, and water 

body were correctly represented. Thus, we assumed that the 

atmospheric correction was successful. Figure 2 shows 

spectral signatures comparison between TOA spectral 

radiance image and atmospherically corrected image. 
 

  

  

  

Fig.2 Spectral signatures comparison between TOA spectral radiance image 
(left) and atmospherically corrected image (right) 

Atmospherically corrected image was processed for 

sunglint removal. First, the lowest NIR value was selected 

from optically deep water. This minimum NIR value was 

treated as the value of sunglint-free water. To obtain the 

minimum NIR value, pixels from various levels of sunglint 

intensities were selected. Three classes of different sunglint 

intensities covering low, medium, and high intensity were 

selected. However, from 25,600 selected optically deep water 

pixels, some negative values were found due to the residual 

error from atmospheric correction. Negative value posed a 

problem to the regression process since it did not provide 

valid data for the correction. Therefore, we decided to take the 

mean of the optically deep water pixels as the minimum NIR 

value. The average value of optically deep of NIR band water 

was 133.2.  

To derive the slope for sunglint correction, 5,000 pixels 

with different sunglint intensities from each of VNIR bands 

were collected. Those pixels were put into bi-plot for creating 

linear regression between NIR band and visible bands. The 

regression analysis showed that the relationship between 

visible bands and NIR band was very high. All R
2
 (coefficient 

of determinant) between visible bands and NIR band exceeded 

0.85. The results of linear regression for each bi-plot are 

shown in Figure 3. 

 

 

 

Fig. 3 Bi-plot of pixels with different sunglint intensity between visible bands 

and NIR band 
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TABLE III 

THE R2 
AND SLOPE (B) FOR THE REGRESSION ANALYSIS BETWEEN VISIBLE 

BANDS AND NIR BAND 

Bands R2  b 

Blue – NIR 0.859 0.9659 

Green – NIR 0.861 0.9903 

Red - NIR 0.961 1.0061 

Sunglint removal process was carried out using custom 

formula document on UNESCO Bilko 3.3 software. The data 

output was set to 32-bit floating point to accommodate 

decimals and negative values. Masking of the land pixels prior 

to sunglint removal was not performed since they will 

automatically be invalid after sunglint removal. Therefore, 

land masking process can be done afterward when performing 

further underwater image processing routines such as water 

column correction ([5], [20], [16], [24]) and PCA model ([3], 

[9], [17]). Then, the values of slope (Table 2) and minimum 

NIR were entered into Equation 3 to remove sunglint from the 

image. After the algorithm was applied, sunglint occurred on 

the water surface were effectively removed from the image. 

The comparison between the original image and sunglint-free 

image is shown in Figure 4. 

 

 

Fig. 4 Quickbird image before sunglint removal (above) and after sunglint 
removal (bottom) 

The most obvious improvement that can be identified on 

sunglint-free image compared to the original image was the 

visual appearance of the objects located underwater. In the 

sunglint-free image, benthic habitats were clearly identified, 

and information on areas that previously affected by sunglint 

has been revealed. Furthermore, the contrast between habitats 

which were not highly distorted by sunglint in the original 

image was also enhanced. For example, the contrast between 

seagrass habitat and sand habitat in the lagoon area was 

strongly enhanced. Moreover, the intra-variation within 

seagrass habitat was also increased, which is shown by higher 

visual variations on seagrass area. Conceptually, sunglint-free 

image has much better discriminating power, and thus it 

should be able to produce better benthic habitat map. 

However, there were still several issues that should be 

carefully considered when using this sunglint-free image for 

underwater mapping process. First, if the sensor only has one 

IR band, the IR band itself cannot be corrected. However, NIR 

band is of limited usage for underwater mapping due to its 

poor ability to penetrate water. Second, as previously 

mentioned, the value of any terrestrial or emergent objects 

will be invalid after sunglint removal process. Figure 4 reveals 

that terrestrial objects such as dry sand, dry soil, and green 

vegetation were completely dark because their values are 

invalid. Thus, those objects should be masked out afterwards.  

In fact, invalid value did not only apply on terrestrial 

objects but also on the emerging underwater objects. 

Underwater objects that were emerged due to the low tide at 

the time of image acquisition would also contain invalid value. 

Areas affected by the combination of sunglint and wave-

breaking foams were not able to be resolved. Any information 

about benthic habitats located underlying this kind of water 

surface condition could not be recovered because there was no 

information to begin with. The aforementioned issues should 

be kept in mind and should not be ignored following the 

process of sunglint removal.  

Visual appearance of the sunglint-free image was 

considered as its relative quality. As a result, concluding that 

sunglint-free image is better than the original one without any 

quantitative evident would be unfair and lack of confidence. It 

is because the ability and the agreement of each people to 

visually interpret remote sensing image varies greatly with the 

knowledge, experience, and educational background. 

Accordingly, to assess the image quantitatively, COV analysis 

on each class habitat was conducted.  

COV analysis was conducted on each habitat class found 

on the image. The classification scheme consists of shallow 

sand, deep sand, dense seagrass, sparse seagrass, coral reef, 

and optically deep water. For each habitat class, 150 

representative pixels were selected. Due to the existence of 

water column energy attenuation, habitat descriptor such as 

dense, sparse, deep, and shallow was qualitatively 

incorporated into each habitat class to obtain better 

understanding on COV result. Without water column 

correction, similar habitat distributed at different depths surely 

produces high COV due to the attenuation of light by water 
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column. Therefore, it was important to categorize those 

habitats based on their depth distribution. The result of COV 

analysis including the percentages of sunglint disturbance and 

the revealed additional information is shown in Table 3. 

TABLE IIIII 

RESULTS OF COV ANALYSIS FOR EACH HABITAT CLASS 

Habitat Band 
Raw 

Image 

Corrected 

Image 

Ratio 

COV 

(%) 

Mean 

(%) 

Sunglint 

Influence 

(%) 

Optically 

Deep 

Water 

#1 (Blue) 0.724 0.190 26.36 

25.93 74.07 #2 (Green) 0.799 0.213 26.67 

#3 (Red) 0.821 0.203 24.76 

Shallow 

Sand 

#1 (Blue) 0.116 0.072 62.30 

66.88 33.12 #2 (Green) 0.097 0.065 67.62 

#3 (Red) 0.116 0.082 70.72 

Deep 

Sand 

#1 (Blue) 0.261 0.111 42.55 

38.60 61.39 #2 (Green) 0.297 0.095 32.14 

#3 (Red) 0.464 0.191 41.13 

Dense 

Seagrass 

#1 (Blue) 0.253 1.070 23.64 

29.25 70.75 #2 (Green) 0.126 0.447 28.18 

#3 (Red) 0.092 0.256 35.93 

Sparse 

Seagrass 

#1 (Blue) 0.092 0.146 63.38 

68.83 31.17 #2 (Green) 0.054 0.074 72.22 

#3 (Red) 0.068 0.096 70.89 

Coral 

Reef 

#1 (Blue) 2.325 0.235 10.11 

11.37 88.63 #2 (Green) 1.232 0.16 12.98 

#3 (Red) 1.735 0.191 11.02 

Total 
Sunglint Disturbance 64.30 

Information Revealed 50.96 

 

As seen in Table 3, an average of 64.3% variations within 

particular habitat class was due to the sunglint. Furthermore, 

habitats located in deeper water were more affected. Deep 

sand class was more influenced by sunglint than the sand 

distributed on shallower water. Coral reefs habitat located on 

deeper water was also strongly affected by sunglint. Deeper 

habitats such as coral reefs, optically deep water, and deep 

sand has 88.63%, 74.07% and 61.39% sunglint disturbance 

respectively. In contrast, at shallower water, where the waves 

were milder, the distortion caused by sunglint was not as 

strong as in the deeper water. It was shown by shallow sand 

habitat class whose information was only affected by sunglint 

as much as 33.12%. The results showed that sunglint should 

be minimized prior to benthic mapping process, especially 

during biophysical modelling and digital classification. If 

sunglint correction is not performed, any particular habitat 

area can be classified into more than one class. Thus, habitat 

class which should not be there will appear.  

Interestingly, the removal of sunglint did not only minimize 

the variance of particular habitat but also improving it. The 

improvement in the spectra variation occurred on dense and 

sparse seagrass class. Rather than experiencing a decrease in 

the variance, they experienced variance improvement about 

31.17% and 70.75% for sparse and dense seagrass 

respectively (Table 3 - red highlighted columns). It means that 

70.75% more information on dense seagrass habitat has been 

revealed after sunglint correction. If dense seagrass areas 

located in the south part of the Island were carefully identified 

visually, there were some obvious differences between the 

original image and the corrected one. On the original image, 

dense seagrass appears pretty homogenous and there will be a 

big chance of this area to be classified into one class of dense 

seagrass. Conversely, the sunglint-free image showed that 

there are some variations in that area, not only dominated by 

dense seagrass, but also seagrass at various densities 

interleaving with sand habitat. It seems that the removal of 

sunglint has enhanced the contrast, color, and texture of some 

habitats which improves the discriminating ability of the 

image.  

Finally, sunglint correction is also very important for other 

applications such as ecological parameter modelling that 

requires, for example, an accurate measurement of seagrass 

shoots density which is highly related with its standing crop 

and LAI [7]. In a nutshell, sunglint removal is very useful for 

minimizing intra-habitat variation due to sunglint as well as 

improving the discrimination power of the image by 

enhancing the contrast, color, and texture of some habitats. 

V. CONCLUSIONS 

This study showed that sunglint in high spatial resolution 

image can be removed using NIR band to improve the 

radiometric quality of the image for further underwater image 

analysis. Quantitatively, about 64.3% variations within 

particular habitat class were due to the existence of sunglint in 

water surface. Moreover, objects located at deeper water were 

more affected by sunglint. In addition, sunglint removal also 

managed to enhance the precision of information on areas that 

seems to be homogenous. However, the value of emerging 

and terrestrial objects will be invalid after the correction and 

should be masked prior to further image analysis. To conclude, 

sunglint removal is very useful on minimizing intra-habitat 

spectra variation caused by sunglint and improving the 

discrimination ability of the image by providing more precise 

information on benthic habitats variations. 
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